Search results for "Bounded function"

showing 10 items of 508 documents

Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of Sturm

2011

We construct geodesics in the Wasserstein space of probability measure along which all the measures have an upper bound on their density that is determined by the densities of the endpoints of the geodesic. Using these geodesics we show that a local Poincar\'e inequality and the measure contraction property follow from the Ricci curvature bounds defined by Sturm. We also show for a large class of convex functionals that a local Poincar\'e inequality is implied by the weak displacement convexity of the functional.

Mathematics - Differential GeometryPure mathematicsGeodesicPoincaré inequalityMetric measure spaceCurvature01 natural sciencesConvexitysymbols.namesakeMathematics - Analysis of PDEsMathematics - Metric GeometryFOS: MathematicsMathematics::Metric Geometry0101 mathematicsRicci curvatureMathematicsProbability measure010102 general mathematicsta111Measure contraction propertyMetric Geometry (math.MG)53C23 (Primary) 28A33 49Q20 (Secondary)Functional Analysis (math.FA)010101 applied mathematicsMathematics - Functional AnalysisMetric spaceRicci curvatureDifferential Geometry (math.DG)Poincaré inequalityBounded functionsymbolsMathematics::Differential GeometryAnalysisAnalysis of PDEs (math.AP)
researchProduct

Ahlfors-regular distances on the Heisenberg group without biLipschitz pieces

2015

We show that the Heisenberg group is not minimal in looking down. This answers Problem 11.15 in `Fractured fractals and broken dreams' by David and Semmes, or equivalently, Question 22 and hence also Question 24 in `Thirty-three yes or no questions about mappings, measures, and metrics' by Heinonen and Semmes. The non-minimality of the Heisenberg group is shown by giving an example of an Ahlfors $4$-regular metric space $X$ having big pieces of itself such that no Lipschitz map from a subset of $X$ to the Heisenberg group has image with positive measure, and by providing a Lipschitz map from the Heisenberg group to the space $X$ having as image the whole $X$. As part of proving the above re…

53C17 22F50 22E25 14M17General MathematicsSpace (mathematics)Heisenberg group01 natural sciencesMeasure (mathematics)Image (mathematics)Set (abstract data type)Ahlfors-regular distancesMathematics - Metric Geometry53C170103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsHeisenberg groupMathematics::Metric GeometryMathematics (all)22E250101 mathematicsMathematicsDiscrete mathematicsmatematiikkamathematicsMathematics::Complex Variables010308 nuclear & particles physicsta111010102 general mathematicsMetric Geometry (math.MG)Lipschitz continuityMetric spaceMathematics - Classical Analysis and ODEsBounded function14M17; 22E25; 22F50; 53C17; Mathematics (all)14M1722F50
researchProduct

Conformal measures for multidimensional piecewise invertible maps

2001

Given a piecewise invertible map T:X\to X and a weight g:X\rightarrow\ ]0,\infty[ , a conformal measure \nu is a probability measure on X such that, for all measurable A\subset X with T:A\to TA invertible, \nu(TA)= \lambda \int_{A}\frac{1}{g}\ d\nu with a constant \lambda>0 . Such a measure is an essential tool for the study of equilibrium states. Assuming that the topological pressure of the boundary is small, that \log g has bounded distortion and an irreducibility condition, we build such a conformal measure.

Applied MathematicsGeneral MathematicsBoundary (topology)Measure (mathematics)law.inventionCombinatoricsDistortion (mathematics)Invertible matrixlawBounded functionPiecewiseIrreducibilityMathematicsProbability measureErgodic Theory and Dynamical Systems
researchProduct

Notice of Removal: Stochastic generation of the phononic band structure of lossy and infinite crystals

2017

The concept of the band structure is central to the field of phononic crystals. Indeed, capturing the dispersion of Bloch waves — the eigenmodes of propagation in periodic media — gives invaluable information on allowed propagation modes, their phase and group velocities, local resonances, and band gaps. Band structures are usually obtained by solving an eigenvalue problem defined on a closed and bounded domain, which results in a discrete spectrum. There are at least two cases, however, that cannot be reduced to a simple eigenvalue problem: first, when materials showing dispersive loss are present and second, when the unit-cell extends beyond any bound, as in the case of phononic crystal o…

PhysicsField (physics)Band gapBounded functionQuantum mechanicsPhase (waves)Electronic band structureDispersion (water waves)Eigenvalues and eigenvectorsBloch wave2017 IEEE International Ultrasonics Symposium (IUS)
researchProduct

Rates of convergence to equilibrium for collisionless kinetic equations in slab geometry

2017

This work deals with free transport equations with partly diffuse stochastic boundary operators in slab geometry. Such equations are governed by stochastic semigroups in $L^{1}$ spaces$.\ $We prove convergence to equilibrium at the rate $O\left( t^{-\frac{k}{2(k+1)+1}}\right) \ (t\rightarrow +\infty )$ for $L^{1}$ initial data $g$ in a suitable subspace of the domain of the generator $T$ where $k\in \mathbb{N}$ depends on the properties of the boundary operators near the tangential velocities to the slab. This result is derived from a quantified version of Ingham's tauberian theorem by showing that $F_{g}(s):=\lim_{\varepsilon \rightarrow 0_{+}}\left( is+\varepsilon -T\right) ^{-1}g$ exists…

Work (thermodynamics)Generator (category theory)010102 general mathematicsBoundary (topology)Geometry[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA]01 natural sciencesDomain (mathematical analysis)Functional Analysis (math.FA)010101 applied mathematicsMathematics - Functional AnalysisMathematics - Analysis of PDEsBounded functionConvergence (routing)SlabFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsAnalysisSubspace topologyMathematicsMathematical physicsAnalysis of PDEs (math.AP)
researchProduct

M-bornologies on L-valued Sets

2017

We develop an approach to the concept of bornology in the framework of many-valued mathematical structures. It is based on the introduced concept of an M-bornology on an L-valued set (X, E), or an LM-bornology for short; here L is an iccl-monoid, M is a completely distributive lattice and \(E: X\times X \rightarrow L\) is an L-valued equality on the set X. We develop the basics of the theory of LM-bornological spaces and initiate the study of the category of LM-bornological spaces and appropriately defined bounded “mappings” of such spaces.

Mathematics::Functional AnalysisPure mathematics010102 general mathematicsMathematics::General Topology02 engineering and technology01 natural sciencesSet (abstract data type)Mathematics::K-Theory and HomologyBounded function0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processing0101 mathematicsMathematical structureCompletely distributive latticeMathematics
researchProduct

A Nonlocal Mean Curvature Flow

2019

Consider a family { Γt}t≥0 of hypersurfaces embedded in \(\mathbb {R}^N\) parametrized by time t. Assume that each Γt = ∂Et, the boundary of a bounded open set Et in \(\mathbb {R}^N\).

PhysicsMean curvature flowBounded functionMathematical analysisOpen setBoundary (topology)
researchProduct

Banach spaces of general Dirichlet series

2018

Abstract We study when the spaces of general Dirichlet series bounded on a half plane are Banach spaces, and show that some of those classes are isometrically isomorphic between themselves. In a precise way, let { λ n } be a strictly increasing sequence of positive real numbers such that lim n → ∞ ⁡ λ n = ∞ . We denote by H ∞ ( λ n ) the complex normed space of all Dirichlet series D ( s ) = ∑ n b n λ n − s , which are convergent and bounded on the half plane [ Re s > 0 ] , endowed with the norm ‖ D ‖ ∞ = sup Re s > 0 ⁡ | D ( s ) | . If (⁎) there exists q > 0 such that inf n ⁡ ( λ n + 1 q − λ n q ) > 0 , then H ∞ ( λ n ) is a Banach space. Further, if there exists a strictly increasing sequ…

SequenceApplied Mathematics010102 general mathematicsBanach space01 natural sciences010101 applied mathematicsCombinatoricssymbols.namesakeBounded functionsymbolsLinear independence0101 mathematicsPositive real numbersGeneral Dirichlet seriesAnalysisDirichlet seriesMathematicsNormed vector spaceJournal of Mathematical Analysis and Applications
researchProduct

Partial O*-Algebras

2002

This chapter is devoted to the investigation of partial O*-algebras of closable linear operators defined on a common dense domain in a Hilbert space. Section 2.1 introduces of O- and O*-families, O- and O*-vector spaces, partial O*-algebras and O*-algebras. Partial O*-algebras and strong partial O*-algebras are defined by the weak and the strong multiplication. Section 2.2 describes four canonical extensions (closure, full-closure, adjoint, biadjoint) of O*-families and defines the notions of closedness and full-closedness (self-adjointness, integrability) of O*-families in analogy with that of closed (self-adjoint) operators. Section 2.3 deals with two weak bounded commutants M′w and M′qw …

Unbounded operatorPure mathematicssymbols.namesakeSection (category theory)Bounded functionClosure (topology)Hilbert spacesymbolsBicommutantDomain (mathematical analysis)Vector spaceMathematics
researchProduct

On multiplicities of cocharacters for algebras with superinvolution

2021

Abstract In this paper we deal with finitely generated superalgebras with superinvolution, satisfying a non-trivial identity, whose multiplicities of the cocharacters are bounded by a constant. Along the way, we prove that the codimension sequence of such algebras is polynomially bounded if and only if their colength sequence is bounded by a constant.

Pure mathematicsSequenceMultiplicitiesAlgebra and Number TheoryMathematics::Commutative AlgebraSuperinvolution010102 general mathematicsCodimensionCocharacters; Colength; Multiplicities; SuperinvolutionCocharacters01 natural sciencesmultiplicitiecocharacterSettore MAT/02 - AlgebraIdentity (mathematics)SuperinvolutionBounded function0103 physical sciences010307 mathematical physicsFinitely-generated abelian groupColength0101 mathematicsConstant (mathematics)Mathematics
researchProduct